

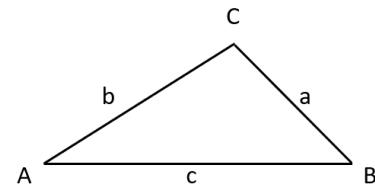
Non-right Triangle Trigonometry

Solving Non-Right Triangles: Sine and Cosine Laws

A triangle has six defining elements: three sides and three angles. To **construct** or **draw** a triangle, only three components are required if at least one of them is a side length.

In trigonometry, we use the **Sine** and **Cosine** Laws to solve or construct a non-right triangle.

Capital letters A, B, and C on the vertices are used to represent angles, and the corresponding lowercase letters a, b, and c represent the lengths of the opposite sides.



Sine Law:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Cosine Law:

$$c^2 = a^2 + b^2 - 2ab \cdot \cos C$$

This formula calculates side “c”. To determine the other sides, just alternate letters.

To solve, construct, or draw a triangle given three components as described, it can be done in four different ways. The first three (s - s - s), (s - A - s), and (A - A - s) are straightforward. Although the fourth case (s - s - A) is more complex and can be divided into 4 subcases. All possible configurations are summarized on the following pages, accompanied by detailed explanations, examples, and solutions.

Case 1. Three sides known as (s - s - s) a, b and c, are given. Find angles A, B, and C.

Rearranging the “Cosine law”, we can find any angles, like:

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} \quad \text{Then:} \quad A = \cos^{-1}\left(\frac{b^2 + c^2 - a^2}{2bc}\right)$$

The second angle can be calculated the same way, or by using the “Sine law”:

$$\sin B = \frac{b \cdot \sin A}{a} \quad B = \sin^{-1}\left(\frac{b \cdot \sin A}{a}\right)$$

The third angle: $C = 180^\circ - (A + B)$. There will be only one possible solution.

Case 2. Given 2 sides “a, and b” and the included angle C, known as (s – A - s).

To find the side c, use the cosine law:

$$c^2 = a^2 + b^2 - 2ab \cdot \cos C$$

Then calculate another angle, like B, by using the sine law:

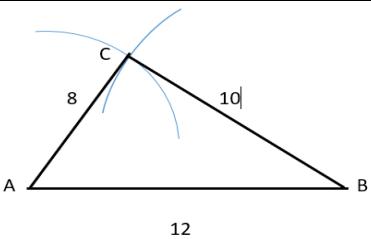
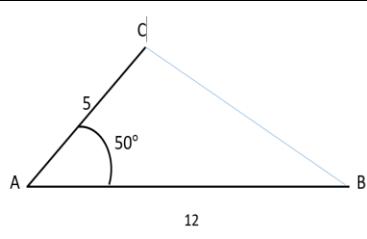
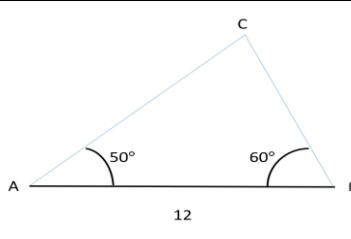
$$\sin B = \frac{b \cdot \sin C}{c} \quad \text{Therefor:} \quad B = \sin^{-1}\left(\frac{b \cdot \sin C}{c}\right)$$

The third angle $B = 180^\circ - (A + C)$. Only one possible solution.

These two cases can only be solved using the Cosine Law as a starting point.

Case 3. Two angles and one side ($A - s - A$, and $A - A - s$) are given. In both cases, the third angle can be found by using the formula $A + B + C = 180^\circ$, so the two cases are the same. Use the sine law to find the two other sides. There is only one possible solution.

Examples of constructing a triangle for the first three cases are summarized in the following diagrams:

Case 1: (s – s - s) Ex: a = 10, b = 8, c = 12 cm	Case 2: (s – A - s) Ex: b = 5 cm, A = 50°, c = 12 cm	Case 3: (A – s - A) Ex: A = 50°, c = 12 cm, B = 60°
		

Solutions for Cases 1, 2, and 3 examples:

Ex 1: $\cos A = \frac{12^2 + 8^2 - 10^2}{2 \times 12 \times 8} = \frac{108}{192} = 0.56$ Therefore: $A = \cos^{-1} 0.56 = 55.77^\circ$

The same way: $\cos B = \frac{12^2 + 10^2 - 8^2}{2 \times 12 \times 10} = \frac{180}{240} = 0.75$ Therefore: $B = \cos^{-1} 0.75 = 41.41^\circ$

Or we can use the sine law to find the angle B, then: $C = 180 - 41.41 - 55.77 = 82.82^\circ$

Ex 2: $a^2 = 12^2 + 5^2 - 2 \times 12 \times 5 \cdot \cos(50^\circ) = 91.87$ Then: $a = 9.58 \text{ cm}$

Use the sine law to find the angle B: $\sin B = \frac{b \cdot \sin A}{a} = \frac{5 \cdot \sin(50^\circ)}{9.58} = 0.40$ Then: $B = 23.57^\circ$

And $C = 180 - 50 - 23.57 = 106.43^\circ$

Ex 3: We need to find the angle C first to have one angle and the opposite side to apply the Sine law:

$$C = 180 - 50 - 60 = 70^\circ$$

Now use the sine law to find sides a and b:

$$\frac{\sin A}{a} = \frac{\sin C}{c} \quad \text{Then: } a = \frac{c \cdot \sin A}{\sin C} = \frac{12 \cdot \sin 50}{\sin 70} = 9.78 \text{ cm}$$

$$\frac{\sin B}{b} = \frac{\sin C}{c} \quad \text{Then: } b = \frac{c \cdot \sin B}{\sin C} = \frac{12 \cdot \sin 60}{\sin 70} = 11.06 \text{ cm}$$

* * *

Case 4. Given two sides and one angle opposite to one of them, like sides a and c, and the angle A, which

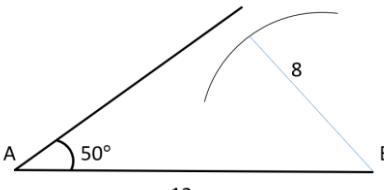
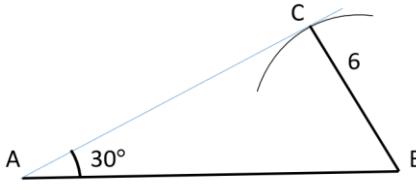
is known as (A - s - s). The task is to find angles B and C, and then side b.

First, by using the sine law, find angle C:

$$\sin C = \frac{c \cdot \sin A}{a} \quad \text{Therefor: } C = \sin^{-1} \left(\frac{c \cdot \sin A}{a} \right)$$

This case is more complicated than the previous three cases; here again, 4 scenarios are possible:

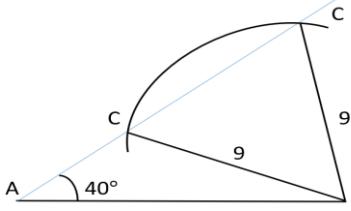
Examples of solving a triangle for the first two scenarios are summarized in the following diagrams:

Case 4 – 1: (A - s - s) Ex: A = 50°, a = 8, c = 12 cm	Case 4 – 2: (A - s - s) Ex: A = 30°, a = 6, c = 12 cm
	

1) It is possible $\frac{c \cdot \sin A}{a} > 1$, or ($\sin C > 1$), this is wrong because: $-1 \leq \sin \theta \leq 1$, So we can conclude there is no solution. Geometrically, this means that the side "a" is too short to reach the side b.

2) If $\frac{c \cdot \sin A}{a} = 1$, means $\sin C = 1$, therefore $C = 90^\circ$, there is one solution, a right triangle.

Examples of solving a triangle for the next two scenarios are summarized in the following diagrams:

Case 4 – 3: (A - s - s) Ex: A = 40°, a = 9, c = 12 cm	Case 4 – 4: (A - s - s) Ex: A = 30°, a = 15, c = 12 cm
	

3) In this case; $\sin C = \frac{c \cdot \sin A}{a} < 1$, which means $\sin C < 1$. This corresponds to the **ambiguous (s - s - A)** case, in which **two solutions** may exist (when the geometry permits, only if $a < c$). For a given sine value, there are two possible angles in the first and second quadrants, C_1 and C_2 , therefore 2 different angles, B and sides b, thus 2 different triangles.

$C_1 = \sin^{-1} \left(\frac{c \cdot \sin A}{a} \right)$, an acute angle, and then; $C_2 = 180^\circ - C_1$ will be an obtuse angle.

$$B_1 = 180 - A - C_1, \text{ and } B_2 = 180 - A - C_2.$$

Then calculate the side c for each pair of angles B and C using: $c = \frac{b \sin C}{\sin B}$

4) Again $\frac{c \cdot \sin A}{a} < 1$, and $C = \sin^{-1} \left(\frac{c \cdot \sin A}{a} \right)$, or $\sin C < 1$, but $a > c$. In this case, the second angle, C_2 ,

is too large, which means $C_2 + B > 180^\circ$. As shown in the geometric diagram, the circle with the center B and the radius "a" can cut side "c" at only one point; the other point falls outside, therefore, there is only one solution, which is: $c = \frac{b \sin C}{\sin B}$

Solutions for Cases 4 examples

Ex 1: $a = 8 \text{ cm}$, $c = 12 \text{ cm}$, and $A = 50^\circ$. Therefore:

$$\sin C = \frac{12 \cdot \sin 50}{8} = 1.15, \text{ means } \sin C > 1, \text{ therefore no solution.}$$

Ex 2: $a = 6 \text{ cm}$, $c = 12 \text{ cm}$, and $A = 30^\circ$. Therefore:

$$\sin C = \frac{12 \cdot \sin 30}{6} = 1, \text{ means } \sin C = 1, \text{ therefore } C = 90^\circ, \text{ there is one solution, a right triangle.}$$

Therefore: $B = 90 - A = 60^\circ$. Side b can be calculated by any of those 2 ways or by the Pythagorean formula: $b^2 = c^2 - a^2$

Ex 3: $a = 9 \text{ cm}$, $c = 12 \text{ cm}$, and $A = 40^\circ$. Therefore: $\sin C = \frac{12 \cdot \sin 40}{9} = 0.86$, then $C_1 = 59^\circ$

and $C_2 = 180 - 59 = 121^\circ$. Therefore, there are 2 angles B and 2 sides b :

$$B_1 = 180 - 40 - 59 = 81^\circ, \quad b_1 = 13.9 \text{ cm} \quad \text{and} \quad B_2 = 180 - 40 - 121 = 19^\circ, \quad b_2 = 4.9 \text{ cm}$$

Ex 4: $a = 15 \text{ cm}$, $c = 12 \text{ cm}$, and $A = 30^\circ$. Therefore: $\sin C = \frac{12 \cdot \sin 30}{15} = 0.4$, then $C_1 = 23.6^\circ$

$C_2 = 180 - 23.6 = 156.4$. So, no second angle is possible. Then $b = 24.1 \text{ cm}$. Only one solution.

As predicted, since $a > c$, the second angle falls outside of side b ; so, there is no second triangle.